
U;, =~ R;~d~ o~s + S; "~d~q~)+P; .  (16) 
s n 

The remainder of the procedure is as above for consistent grids, except that, in calcu- 
lating the temperature in the subregion, the heat fluxes at the rod boundaries are determined 
by interpolation with respect to their values at the node points. 

Note that this method may be extended without difficulty to systems containing three- 
dimensional subregions. 

NOTATION 

T, U, temperature; 8, temperature at the boundary between subregions; q, heat flux; t, 
time; x~, coordinate; ~, dimensionality of subregion; cp, volume specific heat; ~, thermal 
conductivity. 

i. 
2. 

3. 
4. 
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METHOD OF DETERMINING THE THERMOPHYSICAL PROPERTIES 

OF ORTHOTROPIC MATERIALS FROM THE SOLUTION OF A TWO- 

DIMENSIONAL INVERSE HEAT-CONDUCTION PROBLEM 

A. M. Mikhalev and S. V. Reznik UDC 536.2.08 

An unsteady two-dimensional inverse coefficient problem of heat conduction is 
formulated mathematically and solved. 

Recent years have seen the active development of methods of determining the thermophysi- 
cal properties (TPC) of materials which make use of empirical data obtained from the unsteady 
heating of specimens [1-3]. The theoretical foundation of these methods are mathematical 
formulations of unsteady inverse coefficient problems of heat transfer, which are usually in- 
verse heat-conduction problems (ICP). The overwhelming majority of ICP mathematical formu- 
lations are based on the assumption that heat transfer is unidimensional - an assumption 
which is keeping investigators from making thermophysical studies more informative and appli- 
cable to a broader range of temperatures. This is particularly true in regard to comprehen- 
sive study of the TPC of anisotropic materials, the use of concentrated energy flows for 
heating materials, and study of TPC directly on objects of complex structure and shape. The 
practical resolution of these issues - which will mark a new step in the methodology of ther- 
mophysical studies - should begin with the mathematical formulation and solution of unsteady 
multidimensional ICP. 

We will examine the mathematical formulation and solution algorithm of a two-dimensional 
nonlinear coefficient ICP. Let the object in thermal tests be a flat rectangular specimen 
made of a homogeneous orthotropic material in which the principal axes of the thermal conduc- 
tivity tensor coincide with the coordinate axes x I and x 2 . The TPC of the material - the 
volumetric heat capacity cp and the thermal conductivities Ixl, Ix2 - are dependent on tem- 
perature. The initial temperature of the specimen and the heat-transfer conditions on its 
faces are known. During heating (cooling), temperature is measured at several points of the 

�9 Translas from InzhenernoiFizlcheskii Zhurnal, Vol. 56, No. 3, pp. 483-491, March, 
1989. Original article submitted April 18, 1988. 
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specimen. It is assumed that the temperature dependence of the volumetric heat capacity 
cp(T) is known. We need to determine the temperature dependences of thermal conductivity 

Xx~(t), Xxe(T). 
The above physical model of heat transfer corresponds to the following system of equa- 

tions: 

co(T) O-7 = 0x  

T = 0  T=To;  (2) 

X 1 ~- 0 - -  rll~gxt (T) 0.~T =_ (rll 1) T + %1 (T, T, x=); (3) 
�9 c ? x ~  

c3r =(q2 1) T+qgm(T, *, xz); (4) x i  = l rmZx , (T) 

& = 0 - r 2 1 Z . ~ ( T )  a T  = ( r 2 i - -  1) T + %l(T, % xl); (5) 
Ox2 

x2 = h r~2)~x,(T) 0 7 "  = ( r m - -  1) T +  q%=(T, T, &); (6). 
Ox. 

r----O or i. 

With boundary conditions of the first type, ~ (T, x, x) = Tw(T, x). When the boundary condi- 
tions of the second and third types are used, ~ (T, ~, x) = A(Tw)qw(X, x) + ~(Tw)OTw"(T, x) -- 
=f(Tw(i, x) - Tf). 

The inverse problem of determining Xx:(T) and Xx2(T) from experimental data on the ther- 
mal state of the specimen and assigned heat-transfer conditions will be solved in an extremal 
formulation [4]. We construct a computing algorithmfor determining Xxi(T) and Xx2(T) that 
ensures the minimum of the functional 

Xe M 

S = .!' Z (T (m, x) 7" e (m, x))2 d~:. ( 7 )  
0 m==I 

Equations (i)-(6), together with (7), constitute the mathematical formulation of the ICE. 

We represent the sought relations Xxl(T) and Xxa(T) in parametric form: 

~..=(T)={~.~a, k =  1, K}, cr 1, 2, (8) 
where X~k are values of thermal conductivity corresponding to the temperature T k, k = i-~. 
Thermal conductivity changes according to a linear law between nodal values. The number of 
sought parameters should not exceed the number of independent temperature measurements. The 
number of parameters K is usually designated in accordance with the presumed form of the 
temperature dependence of the TPC. 

As a result of representation (8), we have a problem of parametric identification in a 
space of 2K parameters. The use of the methods of iterative regularization is effective in 
solving ill-conditioned problems [4]. In this case, the process of minimizing functional 
(7) consists of a series of successive iterations. In each iteration, a gradient method 
[5] is used to determine the search direction, and the minimum is found in the given direc- 

~e M 

tion. One criterion for terminating the iteration is the condition S s ~2, where 82=SEST2dT, 
0 m =  1 

gT is the temperature measurement error. 

We numerically solve problem (1)-(6) to calculate the functional (7) [determine the 
quantity T(m, x) in the functional]. Here, we introduce a difference grid: 

a space grid on the interval [0, 4]: 

~L={xt :=( i - -1)  AXl, Axl>0,  i =  1, N1; A & ( N 1 -  1)=/}; 
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a s p a c e  g r i d  on t h e  i n t e r v a l  [ 0 ,  h i :  

g h = { x ~ - - ( j - - l )  AX=. A x e > 0 ,  i ,  1, N~_; A x . ( N ~ - - l ) = h } :  

and a time grid on the interval [0, Xe]: 

~ = -  {~, ,=nA~, A~>0, n ..... 0, :Va; , \ r : V a = % ) .  

We d e s i g n a t e  T n = T ( x = ,  ~ n ) ;  c n = c ( x ~ ,  r n ) ;  X n -- X(x~,  x n ) ,  ~ = 1,  2 .  Us ing  a l o c a l l y  u n i -  
dimensional scheme [6], we obtain the following for the first time half-step: 

1 ) ~ 1 n +  - ~ -  
t t  ~ - -  ) 

- -  r n ,  j (a~]i )  l (T2,/~'-; - ~  - -  T,",ii 2 ) __ c(e[. ,~t (T, .i 2 __ T?,i),:2Ax) = ( ( r u o -  1) T ,i + ~7?t)/Ax6 ( 9 )  

I n .  _ ! _ ~  
' = r , , + ~ -  ' n + - - w -  , e , (i0) c97 , , i ' ( r , , ,  - 7 - ~ +  T~,i),,'A'~ a '=" ( i - " - ;  " -Tn-j---~- '  ---an4"-I - - -  

- -  , , t  , , * , i  ' i - -]  , i  ( T i , i  T i - I  .i )' 
! 1 1 o (an_!q CT n+ -T- "+ -7-- ~ '--~ ._~ _y. ~ . + i  . . . .  i qlAx~, ( 1 1 )  r a . , ~  ^,,--~,/~--X,,/ - - T x , - ~ , / ) - - C P x ; , i ( T N , , /  - - T ^ , , , i ) / 2 A z  ) - - - - ( (qo~-- l )  Tu, , i"  + v l 2 , / .  

where 
9 3 n + 1  ) n-t-I 

an_:_ I __ 1 ~ ' ~ x t . i . j "  ..,:, i - i - l , i  
t,)" Ax~ 0 . + ! .  ~,,+~ 

.~ . . . .  ~ + .x,.i+~.i) 

For the second time half-step i = ,I-~i: 

I 
-- r ~ l ,  i (b~,-~ l t - m +  I " r n + '  . n +  l n +  - ~ -  / t ' l , 2  " i , ,  ) - - c o " + '  ( r i , l  - - r i  I " ) , 2 M )  = ( ( r o_L i - -  1 ) ~ " + '  _ . . , ,  + ,f..i,+')/Axz; ( 1 2 )  

~ i , l  
1 

ca,+~ (Tn': j __ T".+-2-)/Ax = bqql tT,+I __ ,+i. ~n+l ~Tq+) ,-'i (13) 
v i , i  t , , j  ' ,1  * ' i  ' - - i . i + 1  T i , i  ) - - ~ ' i , i - l ~  ' ,1  - - T i , ) - I ) ;  

1 
, , , n + l  , , ' p n + l -  - n + ! .  , . n . ~ , . l t q . , n ~ . - l .  ?+:,y r~o,~ t~l ,x,_~ t - i . . v ,  T,  . ,%_,) c P , . x ,  v i . . %  - -  T .,. )/Ax). = ((r==,~ - -  1) -i,x,T"+' + r ( 1 4 )  

where 

i , j  ~" 
~ x ~  n ".l .3.- 1 n ~  l 

} t x z , t , i  i x2 ' , i , j - i . l  

System (9)-(14) is solved in each half-step by the trial run method. 

We use the Davidson-Fletcher-Powell method [5] to determine the search direction for 
each new iteration. The values of the gradients of the functional ~S/3XIk , ~S/~X2k , k = 
i-~ needed for this method are calculated from the solution of the problem conjugate with 
(9)-(14) constructed on the basis of the recommendations in [i, 7]. The solution of the 
conjugate problem in regard to specific specimen heat-transfer conditions is one of the 
most important and most complex elements of the algorithm for the solution of the inverse 
heat-conduction problem. In our case, the calculation of 2K gradients in each iteration 
requires only one solution of the conjugate problem. The computing time necessary here is 
comparable to the time needed to solve direct heat-conduction problem (9)-(24). 

The solution of the conjugate problem of (9)-(14) is constructed as follows. The ini- 
tial value of the grid function of the conjugate equation is assigned with x e -- AxN3: 
Yi,j N3+~ = 0, i -- ,!-~i; j = i, N 2. Calculations are performed in the "reverse" direction 
from x = ~e to x = 0. For the first time half-step, the calculations are performed along 
the axis j = i, N2: i 

?,"-,j-7-2 (ru (2a~, i -t-, cp~ , /A'Q + (rn.~ - -  1)/AXl) = rn . j  (V .i 
(15) 

+ "~ ,i co?,i '/A~c) + OS/OTLi; 

1 1 

~ - T .  .a" - - , ,"  2 (a" + a  ~ +cp '~ . i /A~)+  2Yl. i -n.~ l.i "-'.i ' I.i 2,i (16) 

I 
+ " -  -~- a" == ~ c 9 ~ / A ' c - -  OS/OT2 ~ ; 

Y a , i  - 2 , i  - - 7 2 , i  ' ' 

3 4 4  



I 1 
n -  -7-- n - - -g -  (a" " 

?~- l , ~  a~,-~ , j - -  Y~,J ~ , i + % - ~ , i + c P T , / A x ) +  

1 

-}- V~4An- ,i2 a ~.,,~. = - -  ?~.,,~.cp ~.,,~./A~ - -  OS/OT~ , i ,  i = 3, N i - -  2; 

I 1 
n - T  n __ ~ - T  ". + a  n 

YN,--2,i aa,,--2,i ?,,v,--I ,i (aN,--I ,i Nt--2,i  ~- CPNt--1 , //Ax) "JI- 
1 

-'}'- 2?N~,i 2 r12. j cz,)~t_ I ,i - -  - -  n n - -  OS /OTN, -1  .i  , n-  - -  ?N~-- I  , i  CPNt--1 , ] / A T  " 

l 
n 2 

YN, , i  ( r ~ , i  ( 2 a ~ , -  1,1 q-  c 9 } , , J A w )  - -  ( r~.~ 1)/AXl) = 

1 
n-- -T-  n n Cp~r,+,}/A-Q -~- OS/OTN, i = r l2,J !?N,--I  a N , - ~ , i  + ?a ' , , i  , 

( 1 7 )  

( 1 8 )  

( 1 9 )  

For the second time half-step i = i, Nl: 
i 

~.-d,,j (r,., a (2b~,~ + co~, l/A~) -q- (r2s - -  1VAx.), . = rzx, i (.,n-~.~., 2 b~',, 1 + Yz, a -T-coT, 1/AT); ( 2 0 )  

1 
2 v . - a  b" - -  "-~ (b 7 + b~ + c o  7 f A x ) + V , ~  b n "-- ,-7- " i ,1  r21,i  1,1 Y i .2  ,1 t ,2  . t .3  i , 2  = - - Y i , - ~  - cP"],2/A~c; ( 2 1 )  

1 
n--l -- b n bn bn = n-- --~-- con tAT - V i ' i - l b ~ / , / - 1 - - V T ,  i 1( : , i +  i , i - l  + c P T ,  i lAT)+~, '7 ,  j+l , 4  --Vii, ~vi,p , ] =  3, N , , - - 9 ; .  ( 2 2 )  

I 
n--I b.n ..n--I (bn N 1 ~ -  bn @_ Cpt~,Nz_l /~..~) _]_ .gn--, b n :~7-~--1 

V~,~ ,_o  , , N , - - _ ~ - - r ~ , N , _ ~  , , _  ,. ~,,_~ - z , , , ,  ,',N,--~ = - - V , .  _ CPT,,V,_/a'~; (23) 

1 
n- l  (r2~,  ( v , , -  1 ,', n ' - T -  ( 2 4 )  ~i ,N,  i(2bT, N=--1 q - c O T , N , / A ' c ) - ( r ' 2 , ~ -  l) A X l ) - ~ - r e ~ , i . - i , N ~ - - t b i , N . - - t  "~-Vi,lv~ CPi,NJA'Q" 

After each whole time step, the computed values of Yi,j n are used tO determine the gradients 

of the functional (7) relative to the values of thermal conductivity Xx~,i,j n and Xx2,i,j n 
at each node of the difference grid. 

Along the axis x~, j = i, N=: 

OS/&~.  ~,i = cl ,~ (2y?~, --.,,-,~.2,j, (T~,/ - -  T~,h,n . ( 2 5 )  

OS/O~7,,,~,i &,i  (2Y~,-) 1 , , -~,  n n V2,~" ) ( ~ , ~ " -  " ' ? 2 - : )  (T~.,: T l , i )  + c ~ , J ( ? ~ 7 - 1 - -  " - '  T ~ ( 2 6 )  = - -  - -  , Ta, i ) ,  

I n rt--1 n--] T n n 
OSlO~,x,, i , i  = d i - l , i ( ? i - i  ,] - - ? i , /  ) ( i , ]  - -  T i - ~ , i )  + 

+ c  , ,~-1 , , - , ,  T n n = ( 2 7 )  
i , i ( Y i + ~ , i - - Y i , /  ) ( i , i ~ T ~ + l , i ) ,  i 3, N 1 - - 2 ;  

O S / O ~ , , N , _ I  , i  = d~v,_~ i n--I n--1 ,, ,, (VN,--~ ,i ,i) ( T x , - I  ,i - -  T x , - 2 , i )  + , - -  ? N ~ . - - I  

-}-c r  .... ~ n n ( 2 8 )  
N , - - i  ,] \ " N , ,  i - -  ? N , - - I  , / )  (T~h-~ ,i ~ T,v, , i ) ;  

( 2 9 )  
O S / O ~ , ~ t , N t ,  i dNt__l  i n--1 n--1 n T n = ( 2 V ~ , , j  , h  ; - -  u , , n ,  , - -  ? N , - - 1  (TN,--1, 

where 

Along 

2 n 
Ci, i ~ 

(~ , , i+l , :  § Z~,.i./) z 

2 (Z,7,, ~,,:p 
di , j  . . . .  

the axis xz, i = i, Nl: 

n n - I  n--1 iTn  T n OS/O~.x,,z,1 = e m ( 2 y i ,  i - - Y i , 2 )  t i . 2 - -  z ,0 ;  

n ~ = n - ~ l .  n _ _ T . ~ I )  + e i , - ~  1 n - 1  n T n , OS/O~,x,,z,2 / i , l (2yn, -]  1 - Y i , _ ) ( T i , 2  ,, - - Y i : 2 )  ( T / , 2 - -  i,3); 

n n-- I  n- - I  T n n r OS/&x,,~,i f i ' ~ , f ( W , i - i  ( i,i = - - Y i , i  ) - - T i , i - 1 )  q- 

n - ~  n-1 '~ - -  T '  i + l ) ,  ] N , , - -  2 ;  + ei,j  ( ? i , i+I  = 3, - -  ?~,i ) (Ti , i  ,, 

( 3 0 )  

( 3 1 )  

( 3 2 )  

345 



where 

OSIO'~Y,  , ~ = f , . N , - - ~  (~.~--~,,,.,_,~ . ~  : T  ~ r ~  , '~}i,A',--I) I i , N 2 - - 1  ~ l i , N = - - 2 )  z, ", ~z--] 

, o  n--I n - I  . T n T n "~-ei ,N,_l  tz'~t,A',--'~z,.~,',--I) ( t , N , - - I -  I,N=); 

OS/O ~x,,i , tr - -  fi , .~, ' ,-1 ( ' z y i , , v , - - , ' ~  i ,N . .~ l )  ( T i , . V z - -  l - -  i ,N,I,  

(33) 

(34) 

. ' 2 i )  n 
' ~ "x2 ,1 , / - -1  )" 

e i .  j ./t~ ^t l  
( .~;. ~, ,:+ 1 § t .~ ,  . . i )  2 

f~,: ._ 20.x",, ~, :)" 
"in n ' 2 ( .... ~ . : + t + ~  . . . .  ~ . : )  

We can change over from the calculated values of the gradients for the node i, j to g=adients 
relative to the parameters of the sought relations k=k: 

N, N: .V, 

: -  :. (aS,'dZ~,~,:) ~, 
i..I/~ I~=I (35) 

a: .- : l ,  2; k--1-7-K, 
where 3S/3~x~,i,jn , ~ = i, 2, are calculated by means of Eqs. (25)-(34). 

The quantity 3lxan/~k~k, ~ = i, 2, is the ratio of the increment of thermal conductiv- 
ity at the node i, j of the difference grid to the increment of the k-th parameter approxi- 
mating the temperature dependence of thermal conductivity (8). In the case of a linear 
change in lx= between the nodal values k~k, = = i, 2, the quantity 3kx~,i,j/Blak is deter- 
mined from the conditions 

O~ 

T n  - -  

T h - -  T h _  1 O~ i! . . 

TT./.~ Th_l; 

, T ~ - I < T T . i ~ T , : ;  

n 
, Tn<Ti.i<Th+I, 

7"~i -- T~ 

O, T?.j ~ T~+I. 

The sought parameters Xak are calculated from the formula 

ok = L ~  q-#~I,Q, ~ =  l, 2; k =  1, K. (36) 

Let us briefly review the main steps in the solution of the ICP. We use the assigned 
initial temperature dependence of thermal conductivity from the solution of problem (9)-(14) 
to calculate the temperature field in the specimen during heating. We simultaneously calcu- 
late the functional (7). We use the solution of problem (15)-(27) to calculate the conju- 
gate variable y~ ~n in each step at each node of the difference grid. Using the values of 
Yi,j n and Eqs. [~)-(34) and (35), we find the values of the gradients of the functional 
relative to the sought parameters of the temperature dependence of thermal conductivity. 
The calculated values of the gradients are then used to determine the search direction by 
the Davidson-Fletcher-Powell method. Employing cubic interpolation, we find the minimum of 
the functional in the given direction. At the point of the minimum, we determine the new 
search direction and perform the next iteration of the minimization process. The computing 
operation is ended when the functional reaches a previously assigned value. 

The correctness of the ICP solution was checked by traditional methods [4]. Taking a 
specimen made of a material with known thermophysical properties, we calculated the tempera- 
ture field which develops under prescribed heat-transfer conditions. The temperatures at 
individual points of the specimen were taken as experimental thermograms, and we used these 
temperatures and the solution of the ICP to determine the relations ~x1(T! and Xx=(T). 

The results of a numerical modeling are presented below. A flat rectangular specimen 
(Fig. i) was "heated" by a radiative heat flow concentrated in the central region. The 
maximum heat flux was 1.107 W/m 2. The thermophysical properties of the model material cor- 
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Fig. I. Scheme of the numerical experiment: qwma ^~ 1"107 
W/m2; qwmin = 0"4"107 W/m2; af = 5 W/(m2"K); Tf = ~9~ K. 

Fig. 2. Theoretical thermograms with local heating of the 
specimen: 1-6) numbers of thermocouples (the coordinates of 
the thermocouple are shown in Table i). T, K; x, sac. 

TABLE i. Coordinates of the Thermocouples 

No. of 
thermo- 
couple 

XI~ 

X 2 , 

0 

0 
I. 

0 

0,6 

0 
i 

1,5 

4 5 

0 0 

3,0 3,6 

6 7 

0 4,5 

4,8 0 

4,5 

1,5 

9 10 

4,5 7,0 

3,0 3,0 

responded to graphite VPP [8]. It was assumed that ten temperature sensors were installed 
in the specimen (the coordinates of the sensors are shown in Table i). Heating time ~e = 
10 sac. The temperature measurements were made at 15 time points. The temperature field 
in the specimen was calculated on a 31 x 31 grid with a time step of 0.5 sac. 

In conducting the numerical modeling, calculated values of temperature rounded off to 
one digit after the decimal point were taken as experimental values. Thus, the maximum 
error of "measurement" of temperature was 0.05 K. Given the number of temperature measure- 
ments (i0 points, 15 moments of time), this corresponded to the functional S = 0.4 K 2. The 
computation was stopped when the functional reached this value. 

We took the same number of parameters K in the approximation of the temperature depen- 
dence of thermal conductivity in the temperature range 250-1500 K for the solution of the 
direct and inverse heat-conduction problems. The chosen number of parameters was six. 

To check the uniqueness of the ICP solution, thermal conductivity was determined with 
two different initial approximations: AXl = IX2 = 50 W/(m.K) and %xl = %x2 = 100 W/(m.K). 
The solution of the ICP required 6 h of machine time on an ES-1030 computer. The time of 
solution of one direct heat-conduction problem was 4.5 min. The internal memory required 
was 152 K for the maximum possible number of nodes on a 60 x 60 space grid and 3 MB of disk 
storage to store the time files. The capacity of the program was 800 operators. 

Figures 2 and 3 show the theoretical thermograms corresponding to the numerical experi- 
ment. It can be seen that the maximum temperature is 1760 K at the central point of the 
front surface of the specimen at ~e = 10 sac. The results of the solution of the ICP (Fig. 
4) indicate that the resulting relations %x (T) and %x (T) correspond very closely to the 
relations specified in [8] [the deviation within the t~mperature range 300-1500 K is no 
more than 0.02 W/(m'K) in each case]. 

Thus, it has been proven to be possible to comprehensively study heat conduction by 
orthotropic materials during unsteady high-temperature heating on the basis of the solution 
of an unsteady two-dimensional coefficient ICP. The above-described algorithm can naturally 
be extended to axisymmetric bodies. The same principles can be used to construct algorithms 
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Fig. 3. Temperature distribution on the front surface of the 
specimen for different moments of time: i) T = i; 2) 5; 3) 
i0 sec. xl, ~. 

Fig. 4. Results of solution of the two-dimensional ICP: I) 
prescribed relations XxI(T), Xx_(T), W/(m.K); 2) initial ap- 

2 
proximation; 3) values obtained from the solution of the ICP. 

to determine the thermal conductivity and volumetric heat capacity or emissivity of ortho- 
tropic materials. To make reliable use of the algorithm in thermophysical studies, it is 
necessary to evaluate its boundaries of stability when the initial data contains random and 
systematic errors. 

NOTATION 

Xx~(T), Xx2(T), thermal conductivities of the specimen material along the coordinate 
axes x I and x2, respectively; cp(T), volumetric heat capacity of the specimen material; T, 
temperature; ~, current time; r, coefficient with a value of 0 or i, depending on the type 
of boundary conditions; ~, parameter equal to the temperature of the boundary surface or 
the absorbed heat flux; Tw, temperature of the boundary surface; qw, incident radiant heat 
flux; A, e, absorptivity and emissivity of the given boundary surface; ~f, Tf, heat-transfer 
coefficient and temperature of the environment; Te, experimental values of temperature; ~e, 
time of experiment; S, functional; M, number of points in specimen at which temperature is 
measured; X~k, sought parameters approximating the temperature dependence of thermal conduc- 
tivity; K, number of sought parameters; Tk, values of temperature at the nodes of a grid 
approximating the temperature dependence of thermal conductivity; ~T, temperature measure- 
ment error; 5s ~h, ~, difference grid; Axl, Ax2, difference steps for the space coordin- 
ates; NI, N2, number of difference-grid nodes for the coordinates x I and x2; AT, time step; 
N~, number of time steps; s length of specimen; h, thickness of specimen; y~ 4, network 
function of the conjugate equation; p, number of iteration; 8=k, element of the vector space; 
Q, optimum step size in the chosen direction. 
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